mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
Fix sub quadratic attention for SD2 and make it the default optimization.
This commit is contained in:
parent
3b38a31cc7
commit
051f472e8f
@ -175,13 +175,11 @@ class CrossAttentionBirchSan(nn.Module):
|
||||
value = value.unflatten(-1, (self.heads, -1)).transpose(1,2).flatten(end_dim=1)
|
||||
|
||||
dtype = query.dtype
|
||||
# TODO: do we still need to do *everything* in float32, given how we delay the division?
|
||||
# TODO: do we need to support upcast_softmax too? SD 2.1 seems to work without it
|
||||
# if self.upcast_attention:
|
||||
# query = query.float()
|
||||
# key_t = key_t.float()
|
||||
|
||||
bytes_per_token = torch.finfo(query.dtype).bits//8
|
||||
upcast_attention = _ATTN_PRECISION =="fp32" and query.dtype != torch.float32
|
||||
if upcast_attention:
|
||||
bytes_per_token = torch.finfo(torch.float32).bits//8
|
||||
else:
|
||||
bytes_per_token = torch.finfo(query.dtype).bits//8
|
||||
batch_x_heads, q_tokens, _ = query.shape
|
||||
_, _, k_tokens = key_t.shape
|
||||
qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens
|
||||
@ -198,7 +196,7 @@ class CrossAttentionBirchSan(nn.Module):
|
||||
|
||||
query_chunk_size_x = 1024 * 4
|
||||
kv_chunk_size_min_x = None
|
||||
kv_chunk_size_x = (int((chunk_threshold_bytes // (batch_x_heads * bytes_per_token * query_chunk_size_x)) * 1.2) // 1024) * 1024
|
||||
kv_chunk_size_x = (int((chunk_threshold_bytes // (batch_x_heads * bytes_per_token * query_chunk_size_x)) * 2.0) // 1024) * 1024
|
||||
if kv_chunk_size_x < 1024:
|
||||
kv_chunk_size_x = None
|
||||
|
||||
@ -220,6 +218,7 @@ class CrossAttentionBirchSan(nn.Module):
|
||||
kv_chunk_size=kv_chunk_size,
|
||||
kv_chunk_size_min=kv_chunk_size_min,
|
||||
use_checkpoint=self.training,
|
||||
upcast_attention=upcast_attention,
|
||||
)
|
||||
|
||||
hidden_states = hidden_states.to(dtype)
|
||||
@ -383,8 +382,15 @@ class OriginalCrossAttention(nn.Module):
|
||||
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
||||
return self.to_out(out)
|
||||
|
||||
class CrossAttention(CrossAttentionDoggettx):
|
||||
pass
|
||||
import sys
|
||||
if "--use-split-cross-attention" in sys.argv:
|
||||
print("Using split optimization for cross attention")
|
||||
class CrossAttention(CrossAttentionDoggettx):
|
||||
pass
|
||||
else:
|
||||
print("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention")
|
||||
class CrossAttention(CrossAttentionBirchSan):
|
||||
pass
|
||||
|
||||
class MemoryEfficientCrossAttention(nn.Module):
|
||||
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
||||
|
@ -53,14 +53,27 @@ def _summarize_chunk(
|
||||
key_t: Tensor,
|
||||
value: Tensor,
|
||||
scale: float,
|
||||
upcast_attention: bool,
|
||||
) -> AttnChunk:
|
||||
attn_weights = torch.baddbmm(
|
||||
torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
|
||||
query,
|
||||
key_t,
|
||||
alpha=scale,
|
||||
beta=0,
|
||||
)
|
||||
if upcast_attention:
|
||||
with torch.autocast(enabled=False, device_type = 'cuda'):
|
||||
query = query.float()
|
||||
key_t = key_t.float()
|
||||
attn_weights = torch.baddbmm(
|
||||
torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
|
||||
query,
|
||||
key_t,
|
||||
alpha=scale,
|
||||
beta=0,
|
||||
)
|
||||
else:
|
||||
attn_weights = torch.baddbmm(
|
||||
torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
|
||||
query,
|
||||
key_t,
|
||||
alpha=scale,
|
||||
beta=0,
|
||||
)
|
||||
max_score, _ = torch.max(attn_weights, -1, keepdim=True)
|
||||
max_score = max_score.detach()
|
||||
exp_weights = torch.exp(attn_weights - max_score)
|
||||
@ -112,14 +125,27 @@ def _get_attention_scores_no_kv_chunking(
|
||||
key_t: Tensor,
|
||||
value: Tensor,
|
||||
scale: float,
|
||||
upcast_attention: bool,
|
||||
) -> Tensor:
|
||||
attn_scores = torch.baddbmm(
|
||||
torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
|
||||
query,
|
||||
key_t,
|
||||
alpha=scale,
|
||||
beta=0,
|
||||
)
|
||||
if upcast_attention:
|
||||
with torch.autocast(enabled=False, device_type = 'cuda'):
|
||||
query = query.float()
|
||||
key_t = key_t.float()
|
||||
attn_scores = torch.baddbmm(
|
||||
torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
|
||||
query,
|
||||
key_t,
|
||||
alpha=scale,
|
||||
beta=0,
|
||||
)
|
||||
else:
|
||||
attn_scores = torch.baddbmm(
|
||||
torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
|
||||
query,
|
||||
key_t,
|
||||
alpha=scale,
|
||||
beta=0,
|
||||
)
|
||||
attn_probs = attn_scores.softmax(dim=-1)
|
||||
del attn_scores
|
||||
hidden_states_slice = torch.bmm(attn_probs, value)
|
||||
@ -137,6 +163,7 @@ def efficient_dot_product_attention(
|
||||
kv_chunk_size: Optional[int] = None,
|
||||
kv_chunk_size_min: Optional[int] = None,
|
||||
use_checkpoint=True,
|
||||
upcast_attention=False,
|
||||
):
|
||||
"""Computes efficient dot-product attention given query, transposed key, and value.
|
||||
This is efficient version of attention presented in
|
||||
@ -170,11 +197,12 @@ def efficient_dot_product_attention(
|
||||
(batch_x_heads, min(query_chunk_size, q_tokens), q_channels_per_head)
|
||||
)
|
||||
|
||||
summarize_chunk: SummarizeChunk = partial(_summarize_chunk, scale=scale)
|
||||
summarize_chunk: SummarizeChunk = partial(_summarize_chunk, scale=scale, upcast_attention=upcast_attention)
|
||||
summarize_chunk: SummarizeChunk = partial(checkpoint, summarize_chunk) if use_checkpoint else summarize_chunk
|
||||
compute_query_chunk_attn: ComputeQueryChunkAttn = partial(
|
||||
_get_attention_scores_no_kv_chunking,
|
||||
scale=scale
|
||||
scale=scale,
|
||||
upcast_attention=upcast_attention
|
||||
) if k_tokens <= kv_chunk_size else (
|
||||
# fast-path for when there's just 1 key-value chunk per query chunk (this is just sliced attention btw)
|
||||
partial(
|
||||
|
Loading…
Reference in New Issue
Block a user