mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
Fix performance of hooks when hooks are appended via Cond Pair Set Props nodes by properly caching between positive and negative conds, make hook_patches_backup behave as intended (in the case that something pre-registers WeightHooks on the ModelPatcher instead of registering it at sample time)
This commit is contained in:
parent
4446c86052
commit
03a97b604a
@ -317,6 +317,18 @@ class HookGroup:
|
||||
def contains(self, hook: Hook):
|
||||
return hook in self.hooks
|
||||
|
||||
def is_subset_of(self, other: HookGroup):
|
||||
self_hooks = set(self.hooks)
|
||||
other_hooks = set(other.hooks)
|
||||
return self_hooks.issubset(other_hooks)
|
||||
|
||||
def new_with_common_hooks(self, other: HookGroup):
|
||||
c = HookGroup()
|
||||
for hook in self.hooks:
|
||||
if other.contains(hook):
|
||||
c.add(hook.clone())
|
||||
return c
|
||||
|
||||
def clone(self):
|
||||
c = HookGroup()
|
||||
for hook in self.hooks:
|
||||
@ -668,24 +680,26 @@ def _combine_hooks_from_values(c_dict: dict[str, HookGroup], values: dict[str, H
|
||||
else:
|
||||
c_dict[hooks_key] = cache[hooks_tuple]
|
||||
|
||||
def conditioning_set_values_with_hooks(conditioning, values={}, append_hooks=True):
|
||||
def conditioning_set_values_with_hooks(conditioning, values={}, append_hooks=True,
|
||||
cache: dict[tuple[HookGroup, HookGroup], HookGroup]=None):
|
||||
c = []
|
||||
hooks_combine_cache: dict[tuple[HookGroup, HookGroup], HookGroup] = {}
|
||||
if cache is None:
|
||||
cache = {}
|
||||
for t in conditioning:
|
||||
n = [t[0], t[1].copy()]
|
||||
for k in values:
|
||||
if append_hooks and k == 'hooks':
|
||||
_combine_hooks_from_values(n[1], values, hooks_combine_cache)
|
||||
_combine_hooks_from_values(n[1], values, cache)
|
||||
else:
|
||||
n[1][k] = values[k]
|
||||
c.append(n)
|
||||
|
||||
return c
|
||||
|
||||
def set_hooks_for_conditioning(cond, hooks: HookGroup, append_hooks=True):
|
||||
def set_hooks_for_conditioning(cond, hooks: HookGroup, append_hooks=True, cache: dict[tuple[HookGroup, HookGroup], HookGroup]=None):
|
||||
if hooks is None:
|
||||
return cond
|
||||
return conditioning_set_values_with_hooks(cond, {'hooks': hooks}, append_hooks=append_hooks)
|
||||
return conditioning_set_values_with_hooks(cond, {'hooks': hooks}, append_hooks=append_hooks, cache=cache)
|
||||
|
||||
def set_timesteps_for_conditioning(cond, timestep_range: tuple[float,float]):
|
||||
if timestep_range is None:
|
||||
@ -720,9 +734,10 @@ def combine_with_new_conds(conds: list, new_conds: list):
|
||||
def set_conds_props(conds: list, strength: float, set_cond_area: str,
|
||||
mask: torch.Tensor=None, hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True):
|
||||
final_conds = []
|
||||
cache = {}
|
||||
for c in conds:
|
||||
# first, apply lora_hook to conditioning, if provided
|
||||
c = set_hooks_for_conditioning(c, hooks, append_hooks=append_hooks)
|
||||
c = set_hooks_for_conditioning(c, hooks, append_hooks=append_hooks, cache=cache)
|
||||
# next, apply mask to conditioning
|
||||
c = set_mask_for_conditioning(cond=c, mask=mask, strength=strength, set_cond_area=set_cond_area)
|
||||
# apply timesteps, if present
|
||||
@ -734,9 +749,10 @@ def set_conds_props(conds: list, strength: float, set_cond_area: str,
|
||||
def set_conds_props_and_combine(conds: list, new_conds: list, strength: float=1.0, set_cond_area: str="default",
|
||||
mask: torch.Tensor=None, hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True):
|
||||
combined_conds = []
|
||||
cache = {}
|
||||
for c, masked_c in zip(conds, new_conds):
|
||||
# first, apply lora_hook to new conditioning, if provided
|
||||
masked_c = set_hooks_for_conditioning(masked_c, hooks, append_hooks=append_hooks)
|
||||
masked_c = set_hooks_for_conditioning(masked_c, hooks, append_hooks=append_hooks, cache=cache)
|
||||
# next, apply mask to new conditioning, if provided
|
||||
masked_c = set_mask_for_conditioning(cond=masked_c, mask=mask, set_cond_area=set_cond_area, strength=strength)
|
||||
# apply timesteps, if present
|
||||
@ -748,9 +764,10 @@ def set_conds_props_and_combine(conds: list, new_conds: list, strength: float=1.
|
||||
def set_default_conds_and_combine(conds: list, new_conds: list,
|
||||
hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True):
|
||||
combined_conds = []
|
||||
cache = {}
|
||||
for c, new_c in zip(conds, new_conds):
|
||||
# first, apply lora_hook to new conditioning, if provided
|
||||
new_c = set_hooks_for_conditioning(new_c, hooks, append_hooks=append_hooks)
|
||||
new_c = set_hooks_for_conditioning(new_c, hooks, append_hooks=append_hooks, cache=cache)
|
||||
# next, add default_cond key to cond so that during sampling, it can be identified
|
||||
new_c = conditioning_set_values(new_c, {'default': True})
|
||||
# apply timesteps, if present
|
||||
|
@ -210,7 +210,7 @@ class ModelPatcher:
|
||||
self.injections: dict[str, list[PatcherInjection]] = {}
|
||||
|
||||
self.hook_patches: dict[comfy.hooks._HookRef] = {}
|
||||
self.hook_patches_backup: dict[comfy.hooks._HookRef] = {}
|
||||
self.hook_patches_backup: dict[comfy.hooks._HookRef] = None
|
||||
self.hook_backup: dict[str, tuple[torch.Tensor, torch.device]] = {}
|
||||
self.cached_hook_patches: dict[comfy.hooks.HookGroup, dict[str, torch.Tensor]] = {}
|
||||
self.current_hooks: Optional[comfy.hooks.HookGroup] = None
|
||||
@ -282,7 +282,7 @@ class ModelPatcher:
|
||||
n.injections[k] = i.copy()
|
||||
# hooks
|
||||
n.hook_patches = create_hook_patches_clone(self.hook_patches)
|
||||
n.hook_patches_backup = create_hook_patches_clone(self.hook_patches_backup)
|
||||
n.hook_patches_backup = create_hook_patches_clone(self.hook_patches_backup) if self.hook_patches_backup else self.hook_patches_backup
|
||||
for group in self.cached_hook_patches:
|
||||
n.cached_hook_patches[group] = {}
|
||||
for k in self.cached_hook_patches[group]:
|
||||
@ -912,9 +912,9 @@ class ModelPatcher:
|
||||
callback(self, timestep)
|
||||
|
||||
def restore_hook_patches(self):
|
||||
if len(self.hook_patches_backup) > 0:
|
||||
if self.hook_patches_backup is not None:
|
||||
self.hook_patches = self.hook_patches_backup
|
||||
self.hook_patches_backup = {}
|
||||
self.hook_patches_backup = None
|
||||
|
||||
def set_hook_mode(self, hook_mode: comfy.hooks.EnumHookMode):
|
||||
self.hook_mode = hook_mode
|
||||
@ -950,6 +950,8 @@ class ModelPatcher:
|
||||
for hook in hooks.get_type(comfy.hooks.EnumHookType.Weight):
|
||||
if hook.hook_ref not in self.hook_patches:
|
||||
weight_hooks_to_register.append(hook)
|
||||
else:
|
||||
registered.add(hook)
|
||||
if len(weight_hooks_to_register) > 0:
|
||||
# clone hook_patches to become backup so that any non-dynamic hooks will return to their original state
|
||||
self.hook_patches_backup = create_hook_patches_clone(self.hook_patches)
|
||||
|
Loading…
Reference in New Issue
Block a user