mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
Clean up the VAE dtypes code.
This commit is contained in:
parent
1ed75ab30e
commit
0229228f3f
@ -188,6 +188,12 @@ def is_nvidia():
|
|||||||
return True
|
return True
|
||||||
return False
|
return False
|
||||||
|
|
||||||
|
def is_amd():
|
||||||
|
global cpu_state
|
||||||
|
if cpu_state == CPUState.GPU:
|
||||||
|
if torch.version.hip:
|
||||||
|
return True
|
||||||
|
return False
|
||||||
|
|
||||||
MIN_WEIGHT_MEMORY_RATIO = 0.4
|
MIN_WEIGHT_MEMORY_RATIO = 0.4
|
||||||
if is_nvidia():
|
if is_nvidia():
|
||||||
@ -198,27 +204,17 @@ if args.use_pytorch_cross_attention:
|
|||||||
ENABLE_PYTORCH_ATTENTION = True
|
ENABLE_PYTORCH_ATTENTION = True
|
||||||
XFORMERS_IS_AVAILABLE = False
|
XFORMERS_IS_AVAILABLE = False
|
||||||
|
|
||||||
VAE_DTYPES = [torch.float32]
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
if is_nvidia():
|
if is_nvidia():
|
||||||
if int(torch_version[0]) >= 2:
|
if int(torch_version[0]) >= 2:
|
||||||
if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
|
if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
|
||||||
ENABLE_PYTORCH_ATTENTION = True
|
ENABLE_PYTORCH_ATTENTION = True
|
||||||
if torch.cuda.is_bf16_supported() and torch.cuda.get_device_properties(torch.cuda.current_device()).major >= 8:
|
|
||||||
VAE_DTYPES = [torch.bfloat16] + VAE_DTYPES
|
|
||||||
if is_intel_xpu():
|
if is_intel_xpu():
|
||||||
if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
|
if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
|
||||||
ENABLE_PYTORCH_ATTENTION = True
|
ENABLE_PYTORCH_ATTENTION = True
|
||||||
except:
|
except:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
if is_intel_xpu():
|
|
||||||
VAE_DTYPES = [torch.bfloat16] + VAE_DTYPES
|
|
||||||
|
|
||||||
if args.cpu_vae:
|
|
||||||
VAE_DTYPES = [torch.float32]
|
|
||||||
|
|
||||||
if ENABLE_PYTORCH_ATTENTION:
|
if ENABLE_PYTORCH_ATTENTION:
|
||||||
torch.backends.cuda.enable_math_sdp(True)
|
torch.backends.cuda.enable_math_sdp(True)
|
||||||
torch.backends.cuda.enable_flash_sdp(True)
|
torch.backends.cuda.enable_flash_sdp(True)
|
||||||
@ -754,7 +750,6 @@ def vae_offload_device():
|
|||||||
return torch.device("cpu")
|
return torch.device("cpu")
|
||||||
|
|
||||||
def vae_dtype(device=None, allowed_dtypes=[]):
|
def vae_dtype(device=None, allowed_dtypes=[]):
|
||||||
global VAE_DTYPES
|
|
||||||
if args.fp16_vae:
|
if args.fp16_vae:
|
||||||
return torch.float16
|
return torch.float16
|
||||||
elif args.bf16_vae:
|
elif args.bf16_vae:
|
||||||
@ -763,12 +758,14 @@ def vae_dtype(device=None, allowed_dtypes=[]):
|
|||||||
return torch.float32
|
return torch.float32
|
||||||
|
|
||||||
for d in allowed_dtypes:
|
for d in allowed_dtypes:
|
||||||
if d == torch.float16 and should_use_fp16(device, prioritize_performance=False):
|
if d == torch.float16 and should_use_fp16(device):
|
||||||
return d
|
|
||||||
if d in VAE_DTYPES:
|
|
||||||
return d
|
return d
|
||||||
|
|
||||||
return VAE_DTYPES[0]
|
# NOTE: bfloat16 seems to work on AMD for the VAE but is extremely slow in some cases compared to fp32
|
||||||
|
if d == torch.bfloat16 and (not is_amd()) and should_use_bf16(device):
|
||||||
|
return d
|
||||||
|
|
||||||
|
return torch.float32
|
||||||
|
|
||||||
def get_autocast_device(dev):
|
def get_autocast_device(dev):
|
||||||
if hasattr(dev, 'type'):
|
if hasattr(dev, 'type'):
|
||||||
|
@ -111,7 +111,7 @@ class CLIP:
|
|||||||
model_management.load_models_gpu([self.patcher], force_full_load=True)
|
model_management.load_models_gpu([self.patcher], force_full_load=True)
|
||||||
self.layer_idx = None
|
self.layer_idx = None
|
||||||
self.use_clip_schedule = False
|
self.use_clip_schedule = False
|
||||||
logging.debug("CLIP model load device: {}, offload device: {}, current: {}".format(load_device, offload_device, params['device']))
|
logging.info("CLIP model load device: {}, offload device: {}, current: {}, dtype: {}".format(load_device, offload_device, params['device'], dtype))
|
||||||
|
|
||||||
def clone(self):
|
def clone(self):
|
||||||
n = CLIP(no_init=True)
|
n = CLIP(no_init=True)
|
||||||
@ -402,7 +402,7 @@ class VAE:
|
|||||||
self.output_device = model_management.intermediate_device()
|
self.output_device = model_management.intermediate_device()
|
||||||
|
|
||||||
self.patcher = comfy.model_patcher.ModelPatcher(self.first_stage_model, load_device=self.device, offload_device=offload_device)
|
self.patcher = comfy.model_patcher.ModelPatcher(self.first_stage_model, load_device=self.device, offload_device=offload_device)
|
||||||
logging.debug("VAE load device: {}, offload device: {}, dtype: {}".format(self.device, offload_device, self.vae_dtype))
|
logging.info("VAE load device: {}, offload device: {}, dtype: {}".format(self.device, offload_device, self.vae_dtype))
|
||||||
|
|
||||||
def vae_encode_crop_pixels(self, pixels):
|
def vae_encode_crop_pixels(self, pixels):
|
||||||
downscale_ratio = self.spacial_compression_encode()
|
downscale_ratio = self.spacial_compression_encode()
|
||||||
|
Loading…
Reference in New Issue
Block a user