mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-11 10:25:16 +00:00
62 lines
2.2 KiB
Python
62 lines
2.2 KiB
Python
|
import comfy.samplers
|
||
|
import comfy.utils
|
||
|
import torch
|
||
|
import numpy as np
|
||
|
from tqdm.auto import trange, tqdm
|
||
|
import math
|
||
|
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def sample_lcm_upscale(model, x, sigmas, extra_args=None, callback=None, disable=None, total_upscale=2.0, upscale_method="bislerp", upscale_steps=None):
|
||
|
extra_args = {} if extra_args is None else extra_args
|
||
|
|
||
|
if upscale_steps is None:
|
||
|
upscale_steps = max(len(sigmas) // 2 + 1, 2)
|
||
|
else:
|
||
|
upscale_steps += 1
|
||
|
upscale_steps = min(upscale_steps, len(sigmas) + 1)
|
||
|
|
||
|
upscales = np.linspace(1.0, total_upscale, upscale_steps)[1:]
|
||
|
|
||
|
orig_shape = x.size()
|
||
|
s_in = x.new_ones([x.shape[0]])
|
||
|
for i in trange(len(sigmas) - 1, disable=disable):
|
||
|
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||
|
if callback is not None:
|
||
|
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||
|
|
||
|
x = denoised
|
||
|
if i < len(upscales):
|
||
|
x = comfy.utils.common_upscale(x, round(orig_shape[-1] * upscales[i]), round(orig_shape[-2] * upscales[i]), upscale_method, "disabled")
|
||
|
|
||
|
if sigmas[i + 1] > 0:
|
||
|
x += sigmas[i + 1] * torch.randn_like(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
class SamplerLCMUpscale:
|
||
|
upscale_methods = ["bislerp", "nearest-exact", "bilinear", "area", "bicubic"]
|
||
|
|
||
|
@classmethod
|
||
|
def INPUT_TYPES(s):
|
||
|
return {"required":
|
||
|
{"scale_ratio": ("FLOAT", {"default": 1.0, "min": 0.1, "max": 20.0, "step": 0.01}),
|
||
|
"scale_steps": ("INT", {"default": -1, "min": -1, "max": 1000, "step": 1}),
|
||
|
"upscale_method": (s.upscale_methods,),
|
||
|
}
|
||
|
}
|
||
|
RETURN_TYPES = ("SAMPLER",)
|
||
|
CATEGORY = "sampling/custom_sampling/samplers"
|
||
|
|
||
|
FUNCTION = "get_sampler"
|
||
|
|
||
|
def get_sampler(self, scale_ratio, scale_steps, upscale_method):
|
||
|
if scale_steps < 0:
|
||
|
scale_steps = None
|
||
|
sampler = comfy.samplers.KSAMPLER(sample_lcm_upscale, extra_options={"total_upscale": scale_ratio, "upscale_steps": scale_steps, "upscale_method": upscale_method})
|
||
|
return (sampler, )
|
||
|
|
||
|
NODE_CLASS_MAPPINGS = {
|
||
|
"SamplerLCMUpscale": SamplerLCMUpscale,
|
||
|
}
|