mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-11 02:15:17 +00:00
125 lines
4.6 KiB
Python
125 lines
4.6 KiB
Python
|
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
||
|
# SPDX-License-Identifier: Apache-2.0
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""The causal continuous video tokenizer with VAE or AE formulation for 3D data.."""
|
||
|
|
||
|
import logging
|
||
|
import torch
|
||
|
from torch import nn
|
||
|
from enum import Enum
|
||
|
|
||
|
from .cosmos_tokenizer.layers3d import (
|
||
|
EncoderFactorized,
|
||
|
DecoderFactorized,
|
||
|
CausalConv3d,
|
||
|
)
|
||
|
|
||
|
|
||
|
class IdentityDistribution(torch.nn.Module):
|
||
|
def __init__(self):
|
||
|
super().__init__()
|
||
|
|
||
|
def forward(self, parameters):
|
||
|
return parameters, (torch.tensor([0.0]), torch.tensor([0.0]))
|
||
|
|
||
|
|
||
|
class GaussianDistribution(torch.nn.Module):
|
||
|
def __init__(self, min_logvar: float = -30.0, max_logvar: float = 20.0):
|
||
|
super().__init__()
|
||
|
self.min_logvar = min_logvar
|
||
|
self.max_logvar = max_logvar
|
||
|
|
||
|
def sample(self, mean, logvar):
|
||
|
std = torch.exp(0.5 * logvar)
|
||
|
return mean + std * torch.randn_like(mean)
|
||
|
|
||
|
def forward(self, parameters):
|
||
|
mean, logvar = torch.chunk(parameters, 2, dim=1)
|
||
|
logvar = torch.clamp(logvar, self.min_logvar, self.max_logvar)
|
||
|
return self.sample(mean, logvar), (mean, logvar)
|
||
|
|
||
|
|
||
|
class ContinuousFormulation(Enum):
|
||
|
VAE = GaussianDistribution
|
||
|
AE = IdentityDistribution
|
||
|
|
||
|
|
||
|
class CausalContinuousVideoTokenizer(nn.Module):
|
||
|
def __init__(
|
||
|
self, z_channels: int, z_factor: int, latent_channels: int, **kwargs
|
||
|
) -> None:
|
||
|
super().__init__()
|
||
|
self.name = kwargs.get("name", "CausalContinuousVideoTokenizer")
|
||
|
self.latent_channels = latent_channels
|
||
|
self.sigma_data = 0.5
|
||
|
|
||
|
# encoder_name = kwargs.get("encoder", Encoder3DType.BASE.name)
|
||
|
self.encoder = EncoderFactorized(
|
||
|
z_channels=z_factor * z_channels, **kwargs
|
||
|
)
|
||
|
if kwargs.get("temporal_compression", 4) == 4:
|
||
|
kwargs["channels_mult"] = [2, 4]
|
||
|
# decoder_name = kwargs.get("decoder", Decoder3DType.BASE.name)
|
||
|
self.decoder = DecoderFactorized(
|
||
|
z_channels=z_channels, **kwargs
|
||
|
)
|
||
|
|
||
|
self.quant_conv = CausalConv3d(
|
||
|
z_factor * z_channels,
|
||
|
z_factor * latent_channels,
|
||
|
kernel_size=1,
|
||
|
padding=0,
|
||
|
)
|
||
|
self.post_quant_conv = CausalConv3d(
|
||
|
latent_channels, z_channels, kernel_size=1, padding=0
|
||
|
)
|
||
|
|
||
|
# formulation_name = kwargs.get("formulation", ContinuousFormulation.AE.name)
|
||
|
self.distribution = IdentityDistribution() # ContinuousFormulation[formulation_name].value()
|
||
|
|
||
|
num_parameters = sum(param.numel() for param in self.parameters())
|
||
|
logging.info(f"model={self.name}, num_parameters={num_parameters:,}")
|
||
|
logging.info(
|
||
|
f"z_channels={z_channels}, latent_channels={self.latent_channels}."
|
||
|
)
|
||
|
|
||
|
latent_temporal_chunk = 16
|
||
|
self.latent_mean = nn.Parameter(torch.zeros([self.latent_channels * latent_temporal_chunk], dtype=torch.float32))
|
||
|
self.latent_std = nn.Parameter(torch.ones([self.latent_channels * latent_temporal_chunk], dtype=torch.float32))
|
||
|
|
||
|
|
||
|
def encode(self, x):
|
||
|
h = self.encoder(x)
|
||
|
moments = self.quant_conv(h)
|
||
|
z, posteriors = self.distribution(moments)
|
||
|
latent_ch = z.shape[1]
|
||
|
latent_t = z.shape[2]
|
||
|
dtype = z.dtype
|
||
|
mean = self.latent_mean.view(latent_ch, -1)[:, : latent_t].reshape([1, latent_ch, -1, 1, 1]).to(dtype=dtype, device=z.device)
|
||
|
std = self.latent_std.view(latent_ch, -1)[:, : latent_t].reshape([1, latent_ch, -1, 1, 1]).to(dtype=dtype, device=z.device)
|
||
|
return ((z - mean) / std) * self.sigma_data
|
||
|
|
||
|
def decode(self, z):
|
||
|
in_dtype = z.dtype
|
||
|
latent_ch = z.shape[1]
|
||
|
latent_t = z.shape[2]
|
||
|
mean = self.latent_mean.view(latent_ch, -1)[:, : latent_t].reshape([1, latent_ch, -1, 1, 1]).to(dtype=in_dtype, device=z.device)
|
||
|
std = self.latent_std.view(latent_ch, -1)[:, : latent_t].reshape([1, latent_ch, -1, 1, 1]).to(dtype=in_dtype, device=z.device)
|
||
|
|
||
|
z = z / self.sigma_data
|
||
|
z = z * std + mean
|
||
|
z = self.post_quant_conv(z)
|
||
|
return self.decoder(z)
|
||
|
|